Author:
Hussain Amjad,Mahmood Faisal,Arshad Muhammad Sohail,Abbas Nasir,Qamar Nadia,Mudassir Jahanzeb,Farhaj Samia,Nirwan Jorabar Singh,Ghori Muhammad Usman
Abstract
Hypertensive crisis (HC) is an emergency health condition which requires an effective management strategy. Over the years, various researchers have developed captopril based fast-dissolving formulations to manage HC; however, primarily, the question of personalisation remains unaddressed. Moreover, commercially these formulations are available as in fixed-dose combinations or strengths, so the titration of dose according to patient’s prerequisite is challenging to achieve. The recent emergence of 3D printing technologies has given pharmaceutical scientists a way forward to develop personalised medicines keeping in view patients individual needs. The current project, therefore, is aimed at addressing the limitations as mentioned above by developing fast-dissolving captopril tablets using 3D printing approach. Captopril unloaded (F1) and loaded (F2-F4) filaments were successfully produced with an acceptable drug loading and mechanical properties. Various captopril formulations (F2–F4) were successfully printed using fused deposition modelling technique. The results revealed that the formulations (F2 and F3) containing superdisintegrant had a faster extent of dissolution and in-vivo findings were endorsing these results. The present study has successfully exhibited the utilisation of additive manufacturing approach to mend the gap of personalisation and manufacturing fast-dissolving captopril 3D printed tablets. The procedure adopted in the present study may be used for the development of fused deposition modelling (FDM) based fast-dissolving 3D printed tablets.
Funder
Higher Education Commision, Pakistan
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献