Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions

Author:

Ahmad Hilal,Alharbi Walaa,BinSharfan Ibtisam I.,Khan Rais Ahmad,Alsalme AliORCID

Abstract

Cellulose nanofibers were covalently functionalized using diethylenetriamine penta (methylene phosphonic acid) and studied for the extraction of heavy metal ions. The surface-functionalized nanofibers showed a high adsorption capacity towards heavy metal ions as compared to bare nanofibers. The elemental composition and surface morphology of the prepared bio-adsorbent was characterized by X-ray photoelectron spectroscopy, attenuated total reflectance infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy. The prepared material was studied to develop a column-based solid phase extraction method for the preconcentration of trace metal ions and their determination by inductively coupled plasma optical emission spectroscopy. The batch experimental data was well fitted to Langmuir adsorption isotherms (R2 > 0.99) and follows pseudo-second-order kinetics. The experimental variables such as sample pH, equilibrium time, column breakthrough, sorption flow rate, the effect of coexisting ions, and eluent type were systematically studied and optimized accordingly. The detection limit of the proposed method was found to be 0.03, 0.05, and 0.04 µg L−1 for Cu(II), Pb(II), and Cd(II), respectively. Certified Reference Materials were analyzed to validate the proposed method against systematic and constant errors. At a 95% confidence level, the Student’s t-test values were less than the critical Student’s t value (4.302). The developed method was successfully employed for the preconcentration and determination of trace metal ions from real water samples such as river water and industrial effluent.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3