Kinetic Study of the Thermal and Thermo-Oxidative Degradations of Polystyrene Reinforced with Multiple-Cages POSS

Author:

Blanco IgnazioORCID,Cicala GianlucaORCID,Tosto ClaudioORCID,Bottino Francesco Agatino

Abstract

A comprehensive kinetics degradation study is carried out on novel multiple cages polyhedral oligomeric silsesquioxane (POSS)/polystyrene (PS) composites at 5% (w/w) of POSS to assess their thermal behavior with respect to the control PS and other similar POSS/PS systems studied in the past. The composites are synthesized by in situ polymerization of styrene in the presence of POSSs and characterized by 1H-NMR. The characteristics of thermal parameters are determined using kinetics literature methods, such as those developed by Kissinger and Flynn, Wall, and Ozawa (FWO), and discussed and compared with each other and with those obtained in the past for similar POSS/PS composites. A good improvement in the thermal stability with respect to neat polymer is found, but not with respect to those obtained in the past for polystyrene reinforced with single- or double-POSS cages. This behavior is attributed to the greater steric hindrance of the three-cages POSS compared with those of single- or double-cage POSS molecules.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3