Abstract
The progress observed in ‘soft robotics’ brought some promising research in flexible tactile, pressure and force sensors, which can be based on polymeric composite materials. Therefore, in this paper, we intend to evaluate the characteristics of a force-sensitive material—polyethylene-carbon composite (Velostat®) by implementing this material into the design of the flexible tactile sensor. We have explored several possibilities to measure the electrical signal and assessed the mechanical and time-dependent properties of this tactile sensor. The response of the sensor was evaluated by performing tests in static, long-term load and cyclic modes. Experimental results of loading cycle measurements revealed the hysteresis and nonlinear properties of the sensor. The transverse resolution of the sensor was defined by measuring the response of the sensor at different distances from the loaded point. Obtained dependencies of the sensor’s sensitivity, hysteresis, response time, transversal resolution and deformation on applied compressive force promise a practical possibility to use the polyethylene-carbon composite as a sensitive material for sensors with a single electrode pair or its matrix. The results received from experimental research have defined the area of the possible implementation of the sensor based on a composite material—Velostat®.
Subject
Polymers and Plastics,General Chemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献