Large-Scale Shape Transformations of a Sphere Made of a Magnetoactive Elastomer

Author:

Stolbov OlegORCID,Raikher YuriyORCID

Abstract

Magnetostriction effect, i.e., deformation under the action of a uniform applied field, is analyzed to detail for a spherical sample of a magnetoactive elastomer (MAE). A close analogy with the field-induced elongation of spherical ferrofluid droplets implies that similar characteristic effects viz. hysteresis stretching and transfiguration into a distinctively nonellipsoidal bodies, should be inherent to MAE objects as well. The absence until now of such studies seems to be due to very unfavorable conclusions which follow from the theoretical estimates, all of which are based on the assumption that a deformed sphere always retains the geometry of ellipsoid of revolution just changing its aspect ratio under field. Building up an adequate numerical modelling tool, we show that the ‘ellipsoidal’ approximation is misleading beginning right from the case of infinitesimal field strengths and strain increments. The results obtained show that the above-mentioned magnetodeformational effect should distinctively manifest itself in the objects made of quite ordinary MAEs, e.g., composites on the base of silicone cautchouc filled with micron-size carbonyl iron powder.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3