Abstract
A new magneto-hyperelastic model was developed to describe the quasi-static compression behavior of silicone rubber-based isotropic magnetorheological elastomer (MRE) in this work. The magnetization property of MRE was characterized by a vibrating sample magnetometer (VSM), and the quasi-static compression property under different magnetic fields was tested by using a universal testing machine equipped with a magnetic field accessory. Experimental results suggested that the stiffness of the isotropic MRE increased with the magnetic flux density within the tested range. Based on experimental results, a new magneto-hyperelastic model was established by coupling the Ogden hyperelastic model, the magnetization model and the magneto-induced modulus model based on a magnetic dipole theory. The results show that the proposed new model can accurately predict the quasi-static compression property of the isotropic MRE under the tested magnetic flux density and strain ranges using only three model parameters.
Subject
Polymers and Plastics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献