Abstract
This study developed a versatile and facile method for creating pores and tuning the porous structure in the polymer latex films by selectively etching the added functional polyvinyl pyrrolidone (PVP) molecules. The pore formed in the latex films had a similar morphology to that of PVP aggregation before etching. This observation promotes us to regulate the pore morphology that determines the film’s property, such as air permeability through varying the PVP molecule weight and dosage. To this end, the effects of PVP molecule weight and dosage on the pore formation were systematically studied. The results showed that the average pore size of porous film decreased from >10 μm to sub-micron (about 0.4 μm) as the molecular weight or the dosage of PVP increased. This was ascribed to the strong adsorption affinity of PVP molecule onto the latex particle surface, which further hindered the diffusion and self-assembly of PVP molecule. In addition, this interaction became much stronger when the higher molecule weight of PVP or the higher dosage of PVP was employed, leading to the decreased size of PVP aggregation, as well as the formed pores in the latex films. Furthermore, the addition of PVP had little effect on the color of coated fabric based on the results of CIE L*a*b* measurement. The proposed facile method can be used to improve the air permeability of coated fabrics.
Subject
Polymers and Plastics,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献