Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry

Author:

T. de Carvalho LaydeORCID,da S. Paula Maria Luiza,M. de Moraes Rodolfo,Alves Gizelda M.,M. Lacerda Talita,Santos Julio C. dos,M. dos Santos Amilton,Medeiros Simone de F.

Abstract

Biodegradable and biocompatible copolymers have been often studied for the development of biomaterials for drug delivery systems. In this context, this work reports the synthesis and characterization of a novel pullulan-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Pull-g-PHBHV) graft copolymer using click chemistry. Well-defined and functional pullulan backbones containing azide groups (PullN3) previously prepared by our group were successfully used for this purpose and propargyl-terminated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was prepared via transesterification using propargyl alcohol as a chain transfer agent. By an alkyne-azide cycloaddition reaction catalyzed by copper (Cu (I)) (CuAAC), the graft copolymer Pull-g-PHBHV was obtained. The chemical structures of the polymers were accessed by 1H NMR and 13C NMR FTIR. Disappearance of the bands referring to the main bonds evidenced success in the grafting reaction. Besides that, DRX, DSC and TGA were used in order to access the changes in crystallinity and thermal behavior of the material. The remaining crystallinity of the Pull-g-PHBHV structure evidences the presence of PHBHV. Pull-g-PHBHV presented lower degradation maximum temperature values than the starting materials, indicating its minor thermal stability. Finally, the synthesized material is an innovative biopolymer, which has never been reported in the previous literature. It is a bio-derived and biodegradable polymer, chemically modified, resulting in interesting properties which can be useful for their further applications as biomedical systems for controlled delivery, for example.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3