Author:
Anokhina Tatiana,Borisov Ilya,Yushkin Alexey,Vaganov Gleb,Didenko Andrey,Volkov Alexey
Abstract
In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) layer of polyamic-acid (PAA) in N-methyl-2-pyrrolidone (NMP) by using water as non-solvent was considered. It was shown that polymer films formed within the “limited” layer of polymer solution showed a good agreement with the morphology of corresponded asymmetric flat-sheet membranes even in the case of three-component casting solution (PAA/NMP/EtOH). At the same time, the polymer films formed on the interface of two bulk phases (“infinite” regime) did not fully correspond to the membrane structure. It was shown that up to 50% of NMP solvent in PAA solution can be replaced by ethanol, which can have a renewable origin. By changing the ethanol content in the casting solution, the average size of transport pores can be varied in the range of 12–80 nm, and the liquid permeance from 16.6 up to 207 kg/m2∙h∙bar. To summarize, the precipitation of polymer solution within the thin layer can be considered a prompt technique and a powerful tool for fast screening and optimization of the complex composition of casting solutions using its small quantity. Furthermore, the prediction of membrane morphology can be done without casting the membrane, further post-treatment procedures, and scanning electron microscopy (SEM) analysis.
Subject
Polymers and Plastics,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献