Utility of Zinc Oxide Nanoparticles Catalytic Activity in the Electrochemical Determination of Minocycline Hydrochloride

Author:

Al-Mohaimeed Amal M.ORCID,A. Al-Onazi Wedad,El-Tohamy Maha F.

Abstract

The current work described the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) and their electrocatalytic activity in the determination of minocycline hydrochloride (MCL). The unique features of metal oxide nanoparticles such as zinc oxide encourage the researchers to investigate the activity of metal oxide nanoparticles as remarkable semiconductor materials active in the electrochemical sensing determination. Herein, the suggested study displayed a comparative determination of minocycline hydrochloride using two conventional and modified ZnONPs-coated wire sensors. The recorded results showed the linear behavior of the enriched ZnONPs sensor over the 1.0 × 10−10–1.0 × 10−2 mol L−1 with respect to 1.0 × 10−6–1.0 × 10−2 mol L−1 for the conventional sensor. The two sensors are working in the pH range of 3–5 with regression equations EmV = (53.2 ± 0.5) log [MCL] + 448.8 and EmV = (58.7 ± 0.2) log [MCL] + 617.76 for conventional and enriched ZnONPs, respectively. The correlation coefficients were 0.9995 and 0.9998 for the previously mentioned sensors, respectively. The validity of the suggested analytical method was evaluated according to the recommended guidelines for methodology and drug analysis. The developed sensors were also used in the quantification of MCL in commercial formulations.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3