Ballistic Performance of Ramie Fabric Reinforcing Graphene Oxide-Incorporated Epoxy Matrix Composite

Author:

Pereira Artur CamposoORCID,Lima Andreza Menezes,Demosthenes Luana Cristyne da Cruz,Oliveira Michelle Souza,Costa Ulisses OliveiraORCID,Bezerra Wendell Bruno AlmeidaORCID,Monteiro Sergio NevesORCID,Rodriguez Ruben Jesus SanchezORCID,Deus Janine Feitosa de,Anacleto Pinheiro WagnerORCID

Abstract

Graphene oxide (GO) incorporation in natural fiber composites has recently defined a novel class of materials with enhanced properties for applications, including ballistic armors. In the present work, the performance of a 0.5 vol % GO-incorporated epoxy matrix composite reinforced with 30 vol % fabric made of ramie fibers was investigated by stand-alone ballistic tests against the threat of a 0.22 lead projectile. Composite characterization was also performed by Fourier-transform infrared spectroscopy, thermal analysis and X-ray diffraction. Ballistic tests disclosed an absorbed energy of 130 J, which is higher than those reported for other natural fabrics epoxy composite, 74–97 J, as well as plain Kevlar (synthetic aramid fabric), 100 J, with the same thickness. This is attributed to the improved adhesion between the ramie fabric and the composite matrix due to the GO—incorporated epoxy. The onset of thermal degradation above 300 °C indicates a relatively higher working temperature as compared to common natural fiber polymer composites. DSC peaks show a low amount of heat absorbed or release due to glass transition endothermic (113–121 °C) and volatile release exothermic (~132 °C) events. The 1030 cm−1 prominent FTIR band, associated with GO bands between epoxy chains and graphene oxide groups, suggested an effective distribution of GO throughout the composite matrix. As expected, XRD of the 30 vol % ramie fabric-reinforced GO-incorporated epoxy matrix composite confirmed the displacement of the (0 0 1) peak of GO by 8° due to intercalation of epoxy chains into the spacing between GO layers. By improving the adhesion to the ramie fabric and enhancing the thermal stability of the epoxy matrix, as well as by superior absorption energy from projectile penetration, the GO may contribute to the composite effective ballistic performance.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3