Wall Slip Behaviour of Polymers Based on Molecular Dynamics at the Micro/Nanoscale and Its Effect on Interface Thermal Resistance

Author:

Lou Yan,Wu Gang,Feng Yanfeng

Abstract

Taking the Poiseuille flow of a molten polymer in parallel plates as the research object and polymethyl methacrylate (PMMA) as the research material, an all-atom analysis model of the molecular dynamic flow of polymer macromolecules is established according to the Navier slip law. The effects of wall wettability and external pressure on the wall slip behaviour of polymer macromolecules, as well as the spatial evolution process of the entanglement–unentanglement process of polymer chains near the wall under different shearing effects, were studied. The interface thermal resistance rule was explored, and an interface thermal resistance model considering the wall slip behaviour was established. Finally, a micro-injection experiment was used to verify the validity and accuracy of the model. The results show that when the wall is hydrophobic, the polymer melt exhibits significant wall slip. As the external pressure increases, the wall slip speed and the slip length increase. However, after a certain pressure is exceeded, the growth rate of the slip length is basically zero. As the external pressure increases, the PMMA molecular chains gradually start to separate, the single molecular chain becomes untangled from the entangled grid, and the chain detaches from the wall after exceeding a certain threshold. Wall slip reduces the interface thermal resistance between the solid–liquid interface and enhances the interface heat transfer performance. The interface thermal resistance value calculated by molecular dynamics can more accurately reflect the heat conduction rule of the solid–liquid interface at the micro/nanoscale than that measured by the thermal resistance experiment, indicating that the micro/nano interface thermal resistance obtained by molecular dynamics simulation is reliable.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3