Abstract
The novel organic aluminum hypophosphite (ALCPA) and its hybrid (CNALCPA) with graphitic carbon nitride (g-C3N4) were successfully synthesized and applied as halogen-free flame retardants in polyamide 6 (PA6). Their structures, morphology, thermal stability, and fire properties were characterized. Results showed that both ALCPA and CNALCPA had good flame retardancy. PA6/CNALCPA composites achieved a high limited-oxygen-index (LOI) value of 38.3% and a V-0 rating for UL94 at 20 wt % loading, while PA6/ALCPA composites could reach a V-1 rating for UL94. The flame-retardant mechanism was also studied. On the one hand, the incorporation of g-C3N4 produced more gas-phase products, which indicated a gas-phase mechanism. On the other hand, g-C3N4 could catalyze the thermal degradation of ALCPA and PA6 to form a compact char layer that was evidence for a solid-phase mechanism. The tensile test of the PA6 composites also displayed good mechanical properties.
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献