Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers

Author:

R. Murad Ary,Iraqi AhmedORCID,Aziz Shujahadeen B.ORCID,Hi Hunan,N. Abdullah Sozan,Brza M. A.,Abdulwahid Rebar T.ORCID

Abstract

In this work four novel donor-acceptor copolymers, PCDTBTDI-DMO, PCDTBTDI-8, P2F-CDTBTDI-DMO and P2F-CDTBTDI-8, were designed and synthesised via Suzuki polymerisation. The first two copolymers consist of 2,7-carbazole flanked by thienyl moieties as the electron donor unit and benzothiadiazole dicarboxylic imide (BTDI) as electron acceptor units. In the structures of P2F-CDTBTDI-DMO and P2F-CDTBTDI-8 copolymers, two fluorine atoms were incorporated at 3,6-positions of 2,7-carbazole to investigate the impact of fluorine upon the optoelectronic, structural and thermal properties of the resulting polymers. P2F-CDTBTDI-8 possesses the highest number average molecular weight (Mn = 24,200 g mol−1) among all the polymers synthesised. PCDTBTDI-DMO and PCDTBTDI-8 show identical optical band gaps of 1.76 eV. However, the optical band gaps of fluorinated copolymers are slightly higher than non-fluorinated counterparts. All polymers have deep-lying highest occupied molecular orbital (HOMO) levels. Changing the alkyl chain substituents on BTDI moieties from linear n-octyl to branched 3,7-dimethyloctyl groups as well as substituting the two hydrogen atoms at 3,6-positions of carbazole unit by fluorine atoms has negligible impact on the HOMO levels of the polymers. Similarly, the lowest unoccupied molecular orbital (LUMO) energy levels are almost comparable for all polymers. Thermogravimetric analysis (TGA) has shown that all polymers have good thermal stability and also confirmed that the fluorinated copolymers have higher thermal stability relative to those non-fluorinated analogues. Powder X-ray diffraction (XRD) studies proved that all polymers have an amorphous nature in the solid state.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3