Numerical Technique for Study of Noise Grating Dynamics in Holographic Photopolymers

Author:

McLeod Robert R.

Abstract

Although the angular distribution of noise gratings in holographic photopolymer is understood to arise from Bragg matching, the details of scatter strength and dynamics are not fully understood. This confounds development of materials and recording techniques that minimize haze. Here, the kinetics are studied using a multi-physics numerical approach coupling diffraction of light from the dynamic material including scatter centers, reactions of chemical species initiated by this light, diffusion and swelling of these constituents, and the formation of the refractive index from the resulting composition. The approach is validated in the case of two-beam transmission holography by comparison to traditional harmonic series and rigorous coupled-mode approaches. Two beam holography in the presence of scatter is then used to study haze development. This reveals that haze due to weak noise gratings grows significantly above initial scatter only in reaction-limited materials, consistent with proposed Bragg-matched amplification mechanisms. Amplified haze is found to be proportional to initial scatter, quantifying the impact of clean sample fabrication. Conversely, haze is found to grow super-linearly with sample thickness, illustrating the significant challenge for applications requiring low haze in large thickness.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3