Abstract
Polyurethanes (PUs) have various biomedical applications including controlled drug delivery. However, the incompletely release of drug at tumor sites limits the efficiency of these drug loaded polyurethane micelles. Here we report a novel polymer poly(2-ethyl-2-oxazoline)-SS-polyurethane-SS-poly(2-ethyl-2-oxazoline) triblock polyurethane (PEtOz-PU(PTMCSS)-PEtOz). The hydrophilic pH-responsive poly(2-ethyl-2-oxazoline) was used as an end-block to introduce pH responsiveness, and the hydrophobic PU middle-block was easily synthesized by the reaction of poly (trimethylene carbonate) diol containing disulfide bonds (PTMC-SS-PTMC diol) and bis (2-isocyanatoethyl) disulfide (CDI). PEtOz-PU(PTMCSS)-PEtOz could self-assemble to form micelles (176 nm). The drug release profile of PEtOz-PU(PTMCSS)-PEtOz micelles loaded with Doxorubicin (DOX) was studied in the presence of acetate buffer (10 mM, pH 5.0) and 10 mM dithiothreitol (DTT). The results showed that under this environment, DOX-loaded polyurethane micelles could release DOX faster and more thoroughly, about 97% of the DOX was released from the DOX-loaded PEtOz-PU(PTMCSS)-PEtOz micelle. In addition, fluorescent microscopy and cell viability assays validated that the DOX-loaded polyurethane micelle strongly inhibits the growth of C6 cells, suggesting their potential as a new nanomedicine against cancer.
Subject
Polymers and Plastics,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tailoring polymeric nanocarriers for hypoxia-specific drug release: Insights into design and applications in clinics;Chemical Engineering Journal;2024-09
2. Preface;ACS Symposium Series;2023-11-05
3. Editor’s Biography;ACS Symposium Series;2023-11-05
4. Subject Index;ACS Symposium Series;2023-11-05
5. Title, Copyright, Foreword;ACS Symposium Series;2023-11-05