Thermal Mechanical Properties of Graphene Nano-Composites with Kevlar-Nomex Copolymer: A Comparison of the Physical and Chemical Interactions

Author:

Shiju Jessy,Al-Sagheer Fakhreia,Ahmad Zahoor

Abstract

This paper reports the preparation of Kevlar-Nomex copolymer nano-composites with exfoliated pristine and functionalized graphene sheets (Grs). The graphene oxide (GrO) platelets were amidized by the reaction of amine-terminated aramid (Ar) with the functional groups present on the GrO surface to prepare the nano-composites films with different loadings of GrO. Chemical changes involved during the oxidation and subsequent amidation were monitored by Raman, FTIR and XP spectroscopic analyses. Morphology of the composite films was studied by atomic force and scanning electron microscopies. Viscoelastic properties of the hybrid films were studied for their glass transition temperature (Tg) and storage modulus by dynamical mechanical thermal analysis (DMTA). A higher shift in glass transition temperature was obtained by chemically binding the aramid copolymer chains on the functionalized Gr sheets. The increase in tensile strength and modulus at various loadings of GrO are compared with the composites using pristine Gr. The effect of interfacial interactions between the matrix chains and the reinforcement on the properties of these hybrids have been explained.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3