Abstract
Micro-braiding and co-wrapping techniques have been developed over a few decades and have made important contributions to biocomposites development. In this present study, a set of flax/polypropylene (PP) micro-braided and co-wrapped yarns was developed by varying different PP parameters (PP braiding angles and PP wrapping turns, respectively) to get different flax/PP mass ratios. The effects on textile and mechanical characteristics were studied thoroughly at the yarn scale, both dry- and thermo-state tensile tests were carried out, and tensile properties were compared before and after the braiding process to study the braidabilities. It was observed that PP braiding angles of micro-braided yarn influenced the frictional damage on surface treatment agent of flax roving, the cohesive effect between PP filaments/flax roving, and the PP cover factor; PP wrapping turns of co-wrapped yarn had a strong impact on the flax roving damage and the PP coverage, which further influenced the characteristics. Micro-braided yarn and co-wrapped yarn with the same flax/PP mass ratio were compared to evaluate the two different hybrid yarn production techniques; it was proven that micro-braided yarn presented better performance.
Subject
Polymers and Plastics,General Chemistry
Reference23 articles.
1. Fiber-Reinforced Composites: Materials, Manufacturing, and Design;Mallick,2007
2. Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations
3. Hybrid fiber reinforced polymer composites – a review
4. Perspectivas del tratamiento anaerobio de aguas residuales domésticas en países en desarrollo;Lozada;Rev. Eia,2012
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献