The Toxicological Testing and Thermal Decomposition of Drive and Transport Belts Made of Thermoplastic Multilayer Polymer Materials

Author:

Krawiec Piotr,Warguła ŁukaszORCID,Małozięć DanielORCID,Kaczmarzyk Piotr,Dziechciarz AnnaORCID,Czarnecka-Komorowska DorotaORCID

Abstract

The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3