Design, Manufacturing Technology and In-Vitro Evaluation of Original, Polyurethane, Petal Valves for Application in Pulsating Ventricular Assist Devices

Author:

Major Roman,Gawlikowski MaciejORCID,Sanak Marek,Lackner Juergen M.,Kapis Artur

Abstract

Minimizing of the life-threatening thrombo-emboli formation in pulsatile heart assist devices by a new biomimetic heart valve design is presently one of the most important problems in medicine. As part of this work, an original valve structure was proposed intended for pneumatic, extracorporeal ventricular assist devices. The valve design allows for direct integration with other parts of the pulsating blood pump. Strengthening in the form of the titanium or steel frame has been introduced into the polyurethane lagging, which allows for maintaining material continuity and eliminating the risk of blood clotting. The prototype of the valve was made by the injection molding method assisted by numerical simulation of this process. The prototype was introduced into a modified pulsating, extracorporeal heart assist pump ReligaHeart EXT (developed for tilting disc valves) and examined in-vitro using the “artificial patient” model in order to determine hydrodynamic properties of the valve in the environment similar to physiological conditions. Fundamental blood tests, like hemolysis and thrombogenicity have been carried out. Very low backflow through the closed valve was observed despite their slight distortion due to pressure. On the basis of immunofluorescence tests, only slight activation of platelets was found on the inlet valve and slight increased risk of clotting of the outlet valve commissures as a result of poor valve leaflets assembling in the prototype device. No blood hemolysis was observed. Few of the clots formed only in places where the valve surfaces were not smooth enough.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3