Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions

Author:

Pásztói BalázsORCID,Trötschler Tobias M.,Szabó Ákos,Szarka Györgyi,Kerscher BenjaminORCID,Mülhaupt Rolf,Iván BélaORCID

Abstract

Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. PIB-OHs derived from commercial exo-olefin-ended PIB (PIBexo-OH) and allyl-terminated polymer made via quasiliving carbocationic polymerization of isobutylene (PIBall-OH) were tosylated and nosylated in the presence of 4-dimethylaminopyridine (DMAP), pyridine and 1-methylimidazole (1-MI) catalysts and triethylamine (TEA). Our systematic investigations revealed that the end product distribution strongly depends on the relative amount of the components, especially that of TEA. While PIBexo-OTs with quantitative endfunctionality is readily formed from PIBexo-OH, its nosylation is not as straightforward. During sulfonylation of PIBall-OH, the formed tosyl and nosyl endgroups are easily substituted with chloride ions, formed in the first step of sulfonylation, leading to chloride termini. We found that decreased amounts of TEA afford the synthesis of PIBall-OTs and PIBall-ONs with higher than 90% endfunctionalities. These sulfonyl-ended PIBs open new ways for utilizing PIB in various fields and in the synthesis of novel PIB-containing macromolecular architectures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3