The Use of Scattering Data in the Study of the Molecular Organisation of Polymers in the Non-Crystalline State

Author:

Gkourmpis ThomasORCID,Mitchell Geoffrey R.ORCID

Abstract

Scattering data for polymers in the non-crystalline state, i.e., the glassy state or the molten state, may appear to contain little information. In this work, we review recent developments in the use of scattering data to evaluate in a quantitative manner the molecular organization of such polymer systems. The focus is on the local structure of chain segments, on the details of the chain conformation and on the imprint the inherent chemical connectivity has on this structure. We show the value of tightly coupling the scattering data to atomistic-level computer models. We show how quantitative information about the details of the chain conformation can be obtained directly using a model built from definitions of relatively few parameters. We show how scattering data may be supplemented with data from specific deuteration sites and used to obtain information hidden in the data. Finally, we show how we can exploit the reverse Monte Carlo approach to use the data to drive the convergence of the scattering calculated from a 3d atomistic-level model with the experimental data. We highlight the importance of the quality of the scattering data and the value in using broad Q scattering data obtained using neutrons. We illustrate these various methods with results drawn from a diverse range of polymers.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference61 articles.

1. Statistical Mechanics of Chain Molecules;Flory,1969

2. Local order in polymer glasses and melts

3. Theory of Neutron Scattering from Condensed Matter;Lovesey,1984

4. Introduction to the Theory of Thermal Neutron Scattering;Squires,1996

5. Essentials of Neutron Techniques in Soft Matter;Mitchell,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of Organic-Inorganic Nanocomposites During Gel Formation;Polymer-Inorganic Nanostructured Composites Based on Amorphous Silica, Layered Silicates, and Polyionenes;2023-02-17

2. Structural Analysis of Molecular Materials Using the Pair Distribution Function;Chemical Reviews;2021-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3