Abstract
Melting models for flood fed single screw extruders, like the Tadmor model, describe the melting of pure thermoplastic polymers. However, the melting behavior of heterogenous polymer systems is of great interest for recycling issues, for example. In this work, the melting of polymer mixtures and that of pure bulk polymers by the drag induced melt removal principle is examined both theoretically and experimentally. The applied model experiments represent the melting of the solid bed at the barrel in single screw extruders. As polymer pellet mixtures, polypropylene-homopolymer mixed with polypropylene-block-copolymer, high density polyethylene, polyamide 6, and polymethylmethacrylate were studied using different mixing ratios. The melting rate and the shear stress in the melt film were evaluated dependent on the mixing ratio. The results show that when processing unfavorable material combinations, both shear stress and melting rate can be far below that of pure materials, which was also confirmed by screw extrusion and screw pull-out experiments. Furthermore, approaches predicting the achievable melting rate and the achievable shear stress of polymer mixtures based on the corresponding values of the pure materials are presented.
Subject
Polymers and Plastics,General Chemistry
Reference70 articles.
1. Analyzing and Troubleshooting Single-Screw Extruders;Campbell,2013
2. Polymer Extrusion;Rauwendaal,2014
3. Polymer Pellet Flow out of the Hopper into the First Section of a Single Screw
4. Polymer Processing: Principles and Modeling;Agassant,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献