Nonlinear and Synergistic Effects of Built Environment Indicators on Street Vitality: A Case Study of Humid and Hot Urban Cities

Author:

Li Jilong1ORCID,Lin Shiping1,Kong Niuniu1,Ke Yilin1,Zeng Jie1,Chen Jiacheng1

Affiliation:

1. College of Tropical Agriculture and Forestry, Hainan University, Haikou 570208, China

Abstract

Street vitality has become an important indicator for evaluating the attractiveness and potential for the sustainable development of urban neighborhoods. However, research on this topic may overestimate or underestimate the effects of different influencing factors, as most studies overlook the prevalent nonlinear and synergistic effects. This study takes the central urban districts of humid–hot cities in developing countries as an example, utilizing readily available big data sources such as Baidu Heat Map data, Baidu Map data, Baidu Building data, urban road network data, and Amap’s Point of Interest (POI) data to construct a Gradient-Boosting Decision Tree (GBDT) model. This model reveals the nonlinear and synergistic effects of different built environment factors on street vitality. The study finds that (1) construction intensity plays a crucial role in the early stages of urban street development (with a contribution value of 0.71), and as the city matures, the role of diversity gradually becomes apparent (with the contribution value increasing from 0.03 to 0.08); (2) the built environment factors have nonlinear impacts on street vitality; for example, POI density has different thresholds in the three cities (300, 200, and 500); (3) there are significant synergistic effects between different dimensions and indicators of the built environment, such as when the POI density is high and integration exceeds 1.5, a positive synergistic effect is notable, whereas a negative synergistic effect occurs when POI is low. This article further discusses the practical implications of the research findings, providing nuanced and targeted policy suggestions for humid–hot cities at different stages of development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3