Enhanced Estimation of Traffic Noise Levels Using Minute-Level Traffic Flow Data through Convolutional Neural Network

Author:

Yu Wencheng1,Jang Ji-Cheng1,Zhu Yun1ORCID,Peng Jianxin2,Yang Wenwei3,Li Kunjie1

Affiliation:

1. School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China

2. School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

3. Cloud & Information (Guangdong) Eco-Environment Science and Technology Co., Ltd., Foshan 528000, China

Abstract

The advent of high-resolution minute-level traffic flow data from video surveillance on roads has opened up new opportunities for enhancing the estimation of traffic noise levels. In this study, we propose an innovative method that utilizes time series traffic flow data (TSTFD) to estimate traffic noise levels using a deep learning Convolutional Neural Network (CNN). Unlike traditional traffic flow data, TSTFD offer a unique structure and composition suitable for multidimensional data analysis. Our method was evaluated in a pilot study conducted in Foshan City, China, utilizing traffic flow information obtained from roadside video surveillance systems. Our results indicated that the CNN-based model surpassed traditional data-driven statistical models in estimating traffic noise levels, achieving a reduction in mean squared error (MSE) by 10.16%, mean absolute error (MAE) by 4.48%, and an improvement in the coefficient of determination (R²) by 1.73%. The model demonstrated robust generalization capabilities throughout the test period, exhibiting mean errors ranging from 0.790 to 1.007 dBA. However, the model’s applicability is constrained by the acoustic propagation environment, demonstrating effectiveness on roads with similar surroundings while showing limited applicability to those with different surroundings. Overall, this method is cost-effective and offers enhanced accuracy for the estimation of traffic noise level.

Funder

National Key R&D Program of China

High-end Foreign Experts Recruitment Plan of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3