Effect of Recycled Concrete Aggregate Utilization Ratio on Thermal Properties of Self-Cleaning Lightweight Concrete Facades

Author:

Beytekin Hatice Elif1ORCID,Şahin Hatice Gizem2ORCID,Mardani Ali2ORCID

Affiliation:

1. Department of Architecture, Faculty of Architecture, Bursa Uludag University, Bursa 16059, Turkey

2. Department of Civil Engineering, Faculty of Engineering, Bursa Uludag University, Bursa 16059, Turkey

Abstract

In today’s environment, where energy is desired to be used more efficiently, it has been understood that the interest in the use of lightweight concrete with superior performance in terms of thermal insulation properties has increased. On the other hand, it has been stated that construction waste increases rapidly, especially after severe earthquakes. In this context, encouraging the use of recycled concrete waste and efficient disposal of construction and demolition waste is of great importance for the European Green Deal. It is also known that pollutants such as COx and NOx stick to facades over time, causing environmental pollution and visual deterioration. It has been reported that materials with photocatalytic properties are used in lightweight concrete facade elements to prevent such problems. This study examines the effect of using recycled concrete aggregates on the thermal properties of self-cleaning lightweight concrete mixtures (SCLWC). For this purpose, an SCLWC containing 1% TiO2 and 100% pumice aggregate was prepared. By replacing pumice aggregate with recycled concrete aggregate at the rates of 15%, 25%, 35%, 45% and 50%, four different SCLWCs with self-cleaning properties were produced. High-temperature resistance, thermal conductivity performance, microstructure analysis and photocatalytic properties of the produced mixtures were examined. It has been understood that the unit volume weight loss of SCLWC mixtures exposed to high temperatures generally decreases due to the increase in the recycled concrete-aggregate substitution rate. However, it was determined that the loss of compressive strength increased with the increase in the amount of recycled concrete-aggregate replacement. Additionally, it was determined that the thermal-conductivity coefficient values of the mixtures decreased with the use of pumice. After SCLWC mixtures were exposed to 900 °C, small round-shaped crystals formed instead of C–S–H crystals.

Funder

The Bursa Uludag University Science and Technology Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3