A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems

Author:

Mariani Valerio1ORCID,Adinolfi Giovanna1ORCID,Buonanno Amedeo1ORCID,Ciavarella Roberto1ORCID,Ricca Antonio1ORCID,Sorrentino Vincenzo1,Graditi Giorgio1ORCID,Valenti Maria1ORCID

Affiliation:

1. ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy

Abstract

The decarbonization of the electricity grid is one of the actions that can help reduce fossil fuel emissions, and thus their impact on global warming in the future. This decarbonization will be achieved mainly through the integration and widespread diffusion of renewable power sources. This is also going to be supported by the shift from the paradigm of production–transmission–distribution, where electricity production oversees large-size power plants, to renewable-based distributed/diffused production, where electricity is generated very close or even by the same (group of) user(s) (or prosumers in the latter case). The number of mid-/small-size installations based on renewable energy technologies will therefore increase substantially, and the related renewable generation will be dominant against that from large-size power plants. Unfortunately, this will very likely reduce the reliability of the grid, unless appropriate countermeasures are taken/implemented, hopefully at the same time that the paradigm shift is being achieved. To this aim, it is important to identify the anomalies and main fault causes that might possibly affect some of the central renewable (wind, PV, hydrogen) and ancillary technologies that will be used to establish future renewable-based power systems. Accordingly, this paper presents a literature survey, also extending the focus to related datasets that can be used for deeper investigation. It is highlighted that the gaps mainly refer to a lack of a common taxonomy that prevents the establishment of structured knowledge in the scope of renewable-based power systems, a lack of contributions to anomalies/faults specific to wind turbines, and a lack of datasets related to electrolyzers, fuel cells, DC/x conversion, and monitoring and communication systems. Further, in the case of monitoring and communication systems, the scientific literature is both very dated, therefore not considering possible new aspects that would be currently worthy of investigation, and not oriented toward the particular domain addressed, thus considering peculiar aspects that are left out.

Funder

Research Fund for the Italian Electrical System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3