Abstract
This paper presents a data-driven approach that leverages reinforcement learning to manage the optimal energy consumption of a smart home with a rooftop solar photovoltaic system, energy storage system, and smart home appliances. Compared to existing model-based optimization methods for home energy management systems, the novelty of the proposed approach is as follows: (1) a model-free Q-learning method is applied to energy consumption scheduling for an individual controllable home appliance (air conditioner or washing machine), as well as the energy storage system charging and discharging, and (2) the prediction of the indoor temperature using an artificial neural network assists the proposed Q-learning algorithm in learning the relationship between the indoor temperature and energy consumption of the air conditioner accurately. The proposed Q-learning home energy management algorithm, integrated with the artificial neural network model, reduces the consumer electricity bill within the preferred comfort level (such as the indoor temperature) and the appliance operation characteristics. The simulations illustrate a single home with a solar photovoltaic system, an air conditioner, a washing machine, and an energy storage system with the time-of-use pricing. The results show that the relative electricity bill reduction of the proposed algorithm over the existing optimization approach is 14%.
Funder
National Research Foundation of Korea
Chung-Ang University Graduate Research Scholarship in 2018
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献