A Regional Approach for Investigation of Temporal Precipitation Changes

Author:

Ozcelik CeyhunORCID

Abstract

Climatic variability is one of the fundamental aspects of the climate. Our scope of knowledge of this variability is limited by unavailable long-term high-resolution spatial data. Climatic simulations indicate that warmer climate increases extreme precipitations but decreases high-frequency temperature variability. As an important climatologic variable, the precipitation is reported by the IPCC to increase in mid and high altitudes and decrease in subtropical areas. On a regional scale, such a change needs spatio-parametric justification. In this regard, a regionalization approach relying on frequency characteristics and parameters of heavy precipitation may provide better insight into temporal precipitation changes, and thus help us to understand climatic variability and extremes. This study introduces the “index precipitation method”, which aims to define hydrologic homogeneous regions throughout which the frequency distribution of monthly maximum hourly precipitations remains the same and, therefore, investigate whether there are significant temporal precipitation changes in these regions. Homogenous regions are defined based on L-moment ratios of frequency distributions via cluster analysis and considering the spatial contiguity of gauging sites via GIS. Regarding the main hydrologic characteristics of heavy precipitation, 12 indices are defined in order to investigate the existence of regional trends by means of t- and Mann–Kendall tests for determined homogenous regions with similar frequency behaviors. The case study of Japan, using hourly precipitation data on 150 gauges for 1991–2010, shows that trends that statistically exist for single-site observations should be regionally proved. Trends of heavy precipitation have region-specific properties across Japan. Homogenous regions beneficially define statistically significant trends for heavy precipitation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3