Author:
Park Bo Ram,Eom Ye Seul,Choi Dong Hee,Kang Dong Hwa
Abstract
The purpose of this study was to evaluate outdoor PM2.5 infiltration into multifamily homes according to the building characteristics using regression models. Field test results from 23 multifamily homes were analyzed to investigate the infiltration factor and building characteristics including floor area, volume, outer surface area, building age, and airtightness. Correlation and regression analysis were then conducted to identify the building factor that is most strongly associated with the infiltration of outdoor PM2.5. The field tests revealed that the average PM2.5 infiltration factor was 0.71 (±0.19). The correlation analysis of the building characteristics and PM2.5 infiltration factor revealed that building airtightness metrics (ACH50, ELA/FA, and NL) had a statistically significant (p < 0.05) positive correlation (r = 0.70, 0.69, and 0.68, respectively) with the infiltration factor. Following the correlation analysis, a regression model for predicting PM2.5 infiltration based on the ACH50 airtightness index was proposed. The study confirmed that the outdoor-origin PM2.5 concentration in sufficiently leaky units could be up to 1.59 times higher than that in airtight units.
Funder
National Research Foundation of Korea
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献