Abstract
The impact of extreme climate on natural ecosystems and socioeconomic systems is more serious than that of the climate’s mean state. Based on the data of 1698 meteorological stations in China from 2001 to 2018, this study calculated the 27 extreme climate indices of the Expert Team on Climate Change Detection and Indices (ETCCDI). Through correlation analysis and collinearity diagnostics, we selected two representative extreme temperature indices and three extreme precipitation indices. The spatial scale of the impact of extreme climate on Normalized Difference Vegetation Index (NDVI) in China during the growing season from 2001 to 2018 was quantitatively analyzed, and the complexity of the dominant factors in different regions was discussed via clustering analysis. The research results show that extreme climate indices have a scale effect on vegetation. There are spatial heterogeneities in the impacts of different extreme climate indices on vegetation, and these impacts varied between the local, regional and national scales. The relationship between the maximum length of a dry spell (CDD) and NDVI was the most spatially nonstationary, and mostly occurred on the local scale, while the effect of annual total precipitation when the daily precipitation amount was more than the 95th percentile (R95pTOT) showed the greatest spatial stability, and mainly manifested at the national scale. Under the current extreme climate conditions, extreme precipitation promotes vegetation growth, while the influence of extreme temperature is more complicated. As regards intensity and range, the impact of extreme climate on NDVI in China over the past 18 years can be categorized into five types: the humidity-promoting type, the cold-promoting and drought-inhibiting compound type, the drought-inhibiting type, the heat-promoting and drought-inhibiting compound type, and the heat-promoting and humidity-promoting compound type. Drought is the greatest threat to vegetation associated with extreme climate in China.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献