Modified Hilbert Curve for Rectangles and Cuboids and Its Application in Entropy Coding for Image and Video Compression

Author:

Rong Yibiao,Zhang Xia,Lin JianyuORCID

Abstract

In our previous work, by combining the Hilbert scan with the symbol grouping method, efficient run-length-based entropy coding was developed, and high-efficiency image compression algorithms based on the entropy coding were obtained. However, the 2-D Hilbert curves, which are a critical part of the above-mentioned entropy coding, are defined on squares with the side length being the powers of 2, i.e., 2n, while a subband is normally a rectangle of arbitrary sizes. It is not straightforward to modify the Hilbert curve from squares of side lengths of 2n to an arbitrary rectangle. In this short article, we provide the details of constructing the modified 2-D Hilbert curve of arbitrary rectangle sizes. Furthermore, we extend the method from a 2-D rectangle to a 3-D cuboid. The 3-D modified Hilbert curves are used in a novel 3-D transform video compression algorithm that employs the run-length-based entropy coding. Additionally, the modified 2-D and 3-D Hilbert curves introduced in this short article could be useful for some unknown applications in the future.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Application of Multimedia Image Processing Technology in Sports Sociology Education;International Journal of Web-Based Learning and Teaching Technologies;2024-07-17

2. Improving image classification of one-dimensional convolutional neural networks using Hilbert space-filling curves;Applied Intelligence;2023-08-28

3. NRVC: Neural Representation for Video Compression with Implicit Multiscale Fusion Network;Entropy;2023-08-04

4. Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

5. Entropy in Image Analysis III;Entropy;2021-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3