A Data Driven Approach to the Measurement of 10Be/9Be in Cosmic Rays with Magnetic Spectrometers

Author:

Cernetti Cinzia,Nozzoli FrancescoORCID

Abstract

Cosmic Rays (CRs) are powerful tools for the investigation of the structure of the magnetic fields in the galactic halo and the properties of the Inter-Stellar Medium. There are two parameters of CR propagation models: The galactic halo (half-) thickness, H, and the diffusion coefficient, D, are loosely constrained by current CR flux measurements; in particular, a large degeneracy exists, as only H/D is well measured. The 10Be/9Be isotopic flux ratio (thanks to the 2 My lifetime of 10Be) can be used as a radioactive clock that provides the measurement of the residence time of CRs in the galaxy. This is an important tool for solving the degeneracy of H/D. Past measurements of the 10Be/9Be isotopic flux ratios in CRs are scarce, limited to low energy, and affected by large uncertainties. Here, a new technique for measuring the 10Be/9Be isotopic flux ratio in magnetic spectrometers with a data-driven approach is presented. As an example, by applying the method to beryllium events that were published by the PAMELA experiment, it is now possible to determine the important 10Be/9Be measurements while avoiding the prohibitive uncertainties coming from Monte Carlo simulations. It is shown how the accuracy of the PAMELA data permits one to infer a value of the halo thickness with a precision of up to 25%.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3