Involvement of Glycogen Synthase Kinase 3β (GSK3β) in Formation of Phosphorylated Tau and Death of Retinal Ganglion Cells of Rats Caused by Optic Nerve Crush

Author:

Fukiyama Yurie1,Hirokawa Takahisa1,Takai Shinji2ORCID,Kida Teruyo1ORCID,Oku Hidehiro1ORCID

Affiliation:

1. Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan

2. Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan

Abstract

Tauopathy is a neurodegenerative condition associated with oligomeric tau formation through abnormal phosphorylation. We previously showed that tauopathy is involved in death of retinal ganglion cells (RGCs) after optic nerve crush (ONC). It has been proposed that glycogen synthase kinase 3β (GSK3β) is involved in the hyperphosphorylation of tau in Alzheimer’s disease. To determine the roles of GSK3β in tauopathy-related death of RGCs, lithium chloride (LiCl), a GSK3β inhibitor, was injected intravitreally just after ONC. The neuroprotective effects of LiCl were determined by counting Tuj-1-stained RGCs on day 7. Changes of phosphorylated (ser 396) tau in the retina were determined by Simple Western analysis (WES) on day 3. Retinal GSK3β levels were determined by immunohistochemistry (IHC) and an ELISA. There was a 1.9- and 2.1-fold increase in the levels of phosphorylated tau monomers and dimers on day 3 after ONC. LiCl significantly suppressed the increase in the levels of phosphorylated tau induced by ONC. GSK3β was mainly present in somas of RGCs, and ELISA showed that retinal levels increased to 2.0-fold on day 7. IHC showed that the GSK3β expression increased over time and remained in RGCs that were poorly stained by Tuj-1. The GSK3β and tau expression was colocalized in RGCs. The number of RGCs decreased from 1881 ± 188 (sham control) to 1150 ± 192 cells/mm2 on day 7, and LiCl preserved the levels at 1548 ± 173 cells/mm2. Accordingly, GSK3β may be a promising target for some optic nerve injuries.

Funder

Japan Society for the Promotion of Science

J&J Surgical Vision

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3