Identifying Network Biomarkers in Early Diagnosis of Hepatocellular Carcinoma via miRNA–Gene Interaction Network Analysis

Author:

Yang Zhiyuan1,Qi Yuanyuan1,Wang Yijing1,Chen Xiangyun1,Wang Yuerong1,Zhang Xiaoli12

Affiliation:

1. School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer at the histological level. Despite the emergence of new biological technology, advanced-stage HCC remains largely incurable. The prediction of a cancer biomarker is a key problem for targeted therapy in the disease. Methods: We performed a miRNA–gene integrated analysis to identify differentially expressed miRNAs (DEMs) and genes (DEGs) of HCC. The DEM–DEG interaction network was constructed and analyzed. Gene ontology enrichment and survival analyses were also performed in this study. Results: By the analysis of healthy and tumor samples, we found that 94 DEGs and 25 DEMs were significantly differentially expressed in different datasets. Gene ontology enrichment analysis showed that these 94 DEGs were significantly enriched in the term “Liver” with a statistical p-value of 1.71 × 10−26. Function enrichment analysis indicated that these genes were significantly overrepresented in the term “monocarboxylic acid metabolic process” with a p-value = 2.94 × 10−18. Two sets (fourteen genes and five miRNAs) were screened by a miRNA–gene integrated analysis of their interaction network. The statistical analysis of these molecules showed that five genes (CLEC4G, GLS2, H2AFZ, STMN1, TUBA1B) and two miRNAs (hsa-miR-326 and has-miR-331-5p) have significant effects on the survival prognosis of patients. Conclusion: We believe that our study could provide critical clinical biomarkers for the targeted therapy of HCC.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3