Abstract
The modular multilevel converter is capable to reach high-voltage levels with high flexibility, high reliability, and high power quality as it became the standard solution for high-power high-voltage applications that operate with fixed frequency. However, in machine-drive applications, the modular multilevel converter shows critical problems since an extremely high submodule-capacitor voltage ripple occurs in the machine start-up and at low-speed operation, which can damage the converter. Recently, a new converter solution named modular multilevel series converter was proposed as a promising alternative for high-power machine-drive applications since it presented many important structural and operational advantages in relation to the modular multilevel converter such as the reduced number of submodule capacitors and the low submodule-capacitor voltage ripple at low frequencies. Even though the modular multilevel series converter presented a reduced number of capacitors, the size of these capacitors was not analyzed. This paper presents a detailed comparison analysis of the performance of the modular multilevel converter and the modular multilevel series converter at variable-frequency operation, which is based on the proposed analytical description of the submodule-capacitor voltage ripple in such topologies. This analysis concludes that the new modular multilevel series converter can be designed with smaller capacitors in comparison to the modular multilevel converter if these converters are used to drive electrical machines that operate within a range of low-frequency values. In other words, the modular multilevel series converter experiences extremely low submodule-capacitor voltage ripple at very low frequencies, which means that this converter solution presents high performance in the electrical machine start-up and at low-speed operation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献