Low-Resolution Infrared Array Sensor for Counting and Localizing People Indoors: When Low End Technology Meets Cutting Edge Deep Learning Techniques

Author:

Bouazizi MondherORCID,Ye ChenORCID,Ohtsuki TomoakiORCID

Abstract

In this paper, we propose a method that uses low-resolution infrared (IR) array sensors to identify the presence and location of people indoors. In the first step, we introduce a method that uses 32 × 24 pixels IR array sensors and relies on deep learning to detect the presence and location of up to three people with an accuracy reaching 97.84%. The approach detects the presence of a single person with an accuracy equal to 100%. In the second step, we use lower end IR array sensors with even lower resolution (16 × 12 and 8 × 6) to perform the same tasks. We invoke super resolution and denoising techniques to faithfully upscale the low-resolution images into higher resolution ones. We then perform classification tasks and identify the number of people and their locations. Our experiments show that it is possible to detect up to three people and a single person with accuracy equal to 94.90 and 99.85%, respectively, when using frames of size 16 × 12. For frames of size 8 × 6, the accuracy reaches 86.79 and 97.59%, respectively. Compared to a much complex network (i.e., RetinaNet), our method presents an improvement of over 8% in detection.

Publisher

MDPI AG

Subject

Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping Thermal Footprints: Occupancy Estimation and Localization in Diverse Indoor Settings with Thermal Arrays;Proceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies;2024-07-08

2. ZoneFL: Zone-Based Federated Learning at the Edge;Springer Optimization and Its Applications;2024-05-10

3. HW-SW Optimization of DNNs for Privacy-Preserving People Counting on Low-Resolution Infrared Arrays;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

4. Activity Detection in Indoor Environments Using Multiple 2D Lidars;Sensors;2024-01-18

5. A Novel Approach for Activity, Fall and Gait Detection Using Multiple 2D LiDARs;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3