A Bottleneck Auto-Encoder for F0 Transformations on Speech and Singing Voice

Author:

Bous FrederikORCID,Roebel AxelORCID

Abstract

In this publication, we present a deep learning-based method to transform the f0 in speech and singing voice recordings. f0 transformation is performed by training an auto-encoder on the voice signal’s mel-spectrogram and conditioning the auto-encoder on the f0. Inspired by AutoVC/F0, we apply an information bottleneck to it to disentangle the f0 from its latent code. The resulting model successfully applies the desired f0 to the input mel-spectrograms and adapts the speaker identity when necessary, e.g., if the requested f0 falls out of the range of the source speaker/singer. Using the mean f0 error in the transformed mel-spectrograms, we define a disentanglement measure and perform a study over the required bottleneck size. The study reveals that to remove the f0 from the auto-encoder’s latent code, the bottleneck size should be smaller than four for singing and smaller than nine for speech. Through a perceptive test, we compare the audio quality of the proposed auto-encoder to f0 transformations obtained with a classical vocoder. The perceptive test confirms that the audio quality is better for the auto-encoder than for the classical vocoder. Finally, a visual analysis of the latent code for the two-dimensional case is carried out. We observe that the auto-encoder encodes phonemes as repeated discontinuous temporal gestures within the latent code.

Funder

Agence Nationale de la Recherche

GENCI-IDRIS

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Multidimensional Representation of Unidimensional Speech Acoustic Parameters Extracted by Deep Unsupervised Models;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

2. Analysis and Transformation of Voice Level in Singing Voice;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

3. Voice Reenactment with F0 and timing constraints and adversarial learning of conversions;2022 30th European Signal Processing Conference (EUSIPCO);2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3