Parallel Particle Swarm Optimization Using Apache Beam

Author:

Liu JieORCID,Zhu Tao,Zhang Yang,Liu Zhenyu

Abstract

The majority of complex research problems can be formulated as optimization problems. Particle Swarm Optimization (PSO) algorithm is very effective in solving optimization problems because of its robustness, simplicity, and global search capabilities. Since the computational cost of these problems is usually high, it has been necessary to develop optimization algorithms with parallelization. With the advent of big-data technology, such problems can be solved by distributed parallel computing. In previous related work, MapReduce (a programming model that implements a distributed parallel approach to processing and producing large datasets on a cluster) has been used to parallelize the PSO algorithm, but frequent file reads and writes make the execution time of MRPSO very long. We propose Apache Beam particle swarm optimization (BPSO), which uses Apache Beam parallel programming model. In the experiment, we compared BPSO and PSO based on MapReduce (MRPSO) on four benchmark functions by changing the number of particles and optimizing the dimensions of the problem. The experimental results show that, as the number of particles increases, MRPSO remains largely constant when the number of particles is small (<1000), while the time required for algorithm execution increases rapidly when the number of particles exceeds a certain amount (>1000), while BPSO grows slowly and tends to yield better results than MRPSO. As the dimensionality of the optimization problem increases, BPSO can take half the time of MRPSO and obtain better results than it does. MRPSO requires more execution time than BPSO, as the problem complexity varies, but both MRPSO and BPSO are not very sensitive to problem complexity. All program code and input data are uploaded to GitHub.

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3