Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation

Author:

Asadi Mahdi1ORCID,Larki Iman1ORCID,Forootan Mohammad Mahdi1ORCID,Ahmadi Rouhollah1ORCID,Farajollahi Meisam1

Affiliation:

1. Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran 16846-13114, Iran

Abstract

Electricity plays a vital role in the economic development and welfare of countries. Examining the electricity situation and defining scenarios for developing power plant infrastructure will help countries avoid misguided policies that incur high costs and reduce people’s welfare. In the present research, three scenarios from 2021–2040 have been defined for Iran’s electricity status. The first scenario continues the current trend and forecasts population, electricity consumption, and carbon dioxide emissions from power plants with ARIMA and single and triple exponential smoothing time series algorithms. As part of the second scenario, only non-hydro renewable resources will be used to increase the electricity supply. By ensuring the existence of potential, annual growth patterns have been defined, taking into account the renewable electricity generation achieved by successful nations. The third scenario involves integrating operating gas turbines into combined cycles in exchange for buyback contracts. Economically, this scenario calculates return on investment through an arrangement of various contracts for the seller company and fuel savings for the buyer.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3