A Scenario-Based Case Study: Using AI to Analyze Casualties from Landslides in Chittagong Metropolitan Area, Bangladesh

Author:

Alam Edris12ORCID,Sufi Fahim3ORCID,Islam Abu Reza Md. Towfiqul4

Affiliation:

1. Faculty of Resilience, Rabdan Academy, Abu Dhabi P.O. Box 114646, United Arab Emirates

2. Department of Geography and Environmental Studies, University of Chittagong, and Disaster Action and Development Organisation (DADO), Chittagong 4331, Bangladesh

3. School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3000, Australia

4. Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh

Abstract

Understanding the complex dynamics of landslides is crucial for disaster planners to make timely and effective decisions that save lives and reduce the economic impact on society. Using the landslide inventory of the Chittagong Metropolitan Area (CMA), we have created a new artificial intelligence (AI)-based insight system for the town planners and senior disaster recovery strategists of Chittagong, Bangladesh. Our system generates dynamic AI-based insights for a range of complex scenarios created from 7 different landslide feature attributes. The users of our system can select a particular kind of scenario out of the exhaustive list of 1.054 × 1041 possible scenario sets, and our AI-based system will immediately predict how many casualties are likely to occur based on the selected kind of scenario. Moreover, an AI-based system shows how landslide attributes (e.g., rainfall, area of mass, elevation, etc.) correlate with landslide casualty by drawing detailed trend lines by performing both linear and logistic regressions. According to the literature and the best of our knowledge, our CMA scenario-based AI insight system is the first of its kind, providing the most comprehensive understanding of landslide scenarios and associated deaths and damages in the CMA. The system was deployed on a wide range of platforms including Android, iOS, and Windows systems so that it could be easily adapted for strategic disaster planners. The deployed solutions were handed down to 12 landslide strategists and disaster planners for evaluations, whereby 91.67% of users found the solution easy to use, effective, and self-explanatory while using it via mobile.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing landslide risk reduction strategies in Southeast Bangladesh;Jàmbá Journal of Disaster Risk Studies;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3