Electromagnetic Wave Absorption in the Human Head: A Virtual Sensor Based on a Deep-Learning Model

Author:

Di Barba Paolo1ORCID,Januszkiewicz Łukasz2ORCID,Kawecki Jarosław2,Mognaschi Maria Evelina1ORCID

Affiliation:

1. Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy

2. Institute of Electronics, Lodz University of Technology, Al. Politechniki 10, 93-590 Lodz, Poland

Abstract

Determining the amount of electromagnetic wave energy absorbed by the human body is an important issue in the analysis of wireless systems. Typically, numerical methods based on Maxwell’s equations and numerical models of the body are used for this purpose. This approach is time-consuming, especially in the case of high frequencies, for which a fine discretization of the model should be used. In this paper, the surrogate model of electromagnetic wave absorption in human body, utilizing Deep-Learning, is proposed. In particular, a family of data from finite-difference time-domain analyses makes it possible to train a Convolutional Neural Network (CNN), in view of recovering the average and maximum power density in the cross-section region of the human head at the frequency of 3.5 GHz. The developed method allows for quick determination of the average and maximum power density for the area of the entire head and eyeball areas. The results obtained in this way are similar to those obtained by the method based on Maxwell’s equations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear antenna array modeling with deep neural networks;International Journal of Applied Electromagnetics and Mechanics;2023-12-14

2. Bayesian-Inspired Sampling for Efficient Machine-Learning-Assisted Microwave Component Design;IEEE Transactions on Microwave Theory and Techniques;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3