Cyclic Fatigue Resistance of Rotary versus Reciprocating Endodontic Files: A Systematic Review and Meta-Analysis

Author:

De Pedro-Muñoz Ana1,Rico-Romano Cristina1,Sánchez-Llobet Patricia1,Montiel-Company José María2ORCID,Mena-Álvarez Jesús1ORCID

Affiliation:

1. Department of Endodontics, Faculty of Dentistry, Alfonso X El Sabio University, 28691 Madrid, Spain

2. Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain

Abstract

(1) Background: The failure of nickel–titanium (NiTi) rotary files is a complication related to endodontic instruments. The aim of this study was to compare the resistance to cyclic fatigue between rotary and reciprocating file systems. (2) Methods: Specific PICO: Population (P): artificial root canals; Interventions (I): instrumentation with NiTi rotary and reciprocating files; Comparison (C): rotary versus reciprocating files; Outcome (O): cyclic fatigue resistance. Studies were identified through bibliographic research using electronic databases (Medline, Embase, Scopus, SciELO, and WOS). The studies were combined using a random effects model by the inverse variance method. The effect size was the mean of the time to fracture (TTF) and number of cycles to fracture (NCF). Heterogeneity was assessed using the p value of the Q test for heterogeneity and the I2. (3) Results: TTF for rotary files was determined in 474.5 s and 839.1 for reciprocating without statistically significant differences. NCF for rotary systems was determined in 1444.2 and for reciprocating file systems in 4155.9 with statistically significant differences (p = 0.035), making reciprocating files more resistant. (4) Conclusions: Reciprocating files have better resistance to cyclic fatigue than rotary files. When tested in double curvature canals, reciprocating files also showed higher resistance.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3