Wettability Alteration of Limestone Carbonate Cores Using Methylene Blue and Alumina-Based Nanofluid: Implications for EOR

Author:

Shar Abdul Majeed1,Qureshi Muhammad Furqan2,Bhutto Darya khan3ORCID,Memon Faisal Hussain2ORCID

Affiliation:

1. Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan

2. Institute of Petroleum and Natural Gas Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan

3. Department of Petroleum and Gas Engineering, Dawood University of Engineering and Technology, New M. A. Jinnah Rd, Jamshed Quarters Muslimabad, Karachi 74800, Pakistan

Abstract

Wettability is a key parameter for optimizing the residual oil recovery from geological rock formations and it provides a path for improved oil recovery and geo-storage of energy. Thus, the key motive behind wettability alteration from hydrophobic to hydrophilic is to enhance the oil productivity. Thus, this work concentrates on Sui main limestone reservoir core samples’ wettability alteration (altering their surface wetting behavior from an oil-wet to water-wet state) for enhanced oil recovery. Hence, we examine the effectiveness of alumina nanofluid as well as a new chemical methyl blue to alter the wettability. Methyl blue is released on a large scale from various industries, i.e., pharma, textile, and food industries, which is a key environmental concern; subsequently, it contaminates the water table. Hence, the study explores the effects of MB and alumina nanofluid on wettability. The effect of nanofluids formulated via dispersing the alumina nanoparticles in aqueous solutions at various concentrations (0. 0.05, 0.3, 0.50, 0.75, and 1.0 wt. %) were tested for wettability modifications under different physio-thermal conditions. Subsequently, the wettability change was examined for these samples treated with different concentrations of MB (10, 15, 30, 50, and 100 mg/L) for 7 days at two different temperatures (25 and 50 °C). The results show that the hydrophobicity of the SML carbonate rock significantly reverses while treating with alumina nanofluids and MB. Thus, the wettability modification/reversal via the treatment of MB and alumina nanofluids can be an effective mechanism for hydrogen injections and EOR processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3