Enhancing Voice Cloning Quality through Data Selection and Alignment-Based Metrics

Author:

González-Docasal Ander12ORCID,Álvarez Aitor1ORCID

Affiliation:

1. Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastián, Spain

2. Department of Electronics, Engineering and Communications, University of Zaragoza, 50009 Zaragoza, Spain

Abstract

Voice cloning, an emerging field in the speech-processing area, aims to generate synthetic utterances that closely resemble the voices of specific individuals. In this study, we investigated the impact of various techniques on improving the quality of voice cloning, specifically focusing on a low-quality dataset. To contrast our findings, we also used two high-quality corpora for comparative analysis. We conducted exhaustive evaluations of the quality of the gathered corpora in order to select the most-suitable data for the training of a voice-cloning system. Following these measurements, we conducted a series of ablations by removing audio files with a lower signal-to-noise ratio and higher variability in utterance speed from the corpora in order to decrease their heterogeneity. Furthermore, we introduced a novel algorithm that calculates the fraction of aligned input characters by exploiting the attention matrix of the Tacotron 2 text-to-speech system. This algorithm provides a valuable metric for evaluating the alignment quality during the voice-cloning process. We present the results of our experiments, demonstrating that the performed ablations significantly increased the quality of synthesised audio for the challenging low-quality corpus. Notably, our findings indicated that models trained on a 3 h corpus from a pre-trained model exhibit comparable audio quality to models trained from scratch using significantly larger amounts of data.

Funder

Spanish Public Business Entity Red.es

IANA project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3