Velocity Control of a Multi-Motion Mode Spherical Probe Robot Based on Reinforcement Learning

Author:

Ma Wenke12,Li Bingyang23,Cao Yuxue4,Wang Pengfei2,Liu Mengyue2,Chang Chenyang3,Peng Shigang12

Affiliation:

1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

2. China Academy of Aerospace Science and Innovation, Beijing 102600, China

3. College of Engineering, Peking University, Beijing 100871, China

4. Beijing Institute of Control Engineering, Beijing 100190, China

Abstract

As deep space exploration tasks become increasingly complex, the mobility and adaptability of traditional wheeled or tracked probe robots with high functional density are constrained in harsh, dangerous, or unknown environments. A practical solution to these challenges is designing a probe robot for preliminary exploration in unknown areas, which is characterized by robust adaptability, simple structure, light weight, and minimal volume. Compared to the traditional deep space probe robot, the spherical robot with a geometric, symmetrical structure shows better adaptability to the complex ground environment. Considering the uncertain detection environment, the spherical robot should brake rapidly after jumping to avoid reentering obstacles. Moreover, since it is equipped with optical modules for deep space exploration missions, the spherical robot must maintain motion stability during the rolling process to ensure the quality of photos and videos captured. However, due to the nonlinear coupling and parameter uncertainty of the spherical robot, it is tedious to adjust controller parameters. Moreover, the adaptability of controllers with fixed parameters is limited. This paper proposes an adaptive proportion–integration–differentiation (PID) control method based on reinforcement learning for the multi-motion mode spherical probe robot (MMSPR) with rolling and jumping. This method uses the soft actor–critic (SAC) algorithm to adjust the parameters of the PID controller and introduces a switching control strategy to reduce static error. As the simulation results show, this method can facilitate the MMSPR’s convergence within 0.02 s regarding motion stability. In addition, in terms of braking, it enables an MMSPR with random initial speed brake within a convergence time of 0.045 s and a displacement of 0.0013 m. Compared with the PID method with fixed parameters, the braking displacement of the MMSPR is reduced by about 38%, and the convergence time is reduced by about 20%, showing better universality and adaptability.

Funder

Technology 173 Program Technical Field Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3