C-MWCAR: Classification Based on Multiple Weighted Class Association Rules

Author:

Li Gui1,Liu Fan12,Wu Cheng13,Yao Yuan1,Wu Guangxin1,Wang Zhu2,Zhang Yanchun45

Affiliation:

1. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China

2. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Electronic Engineering, Xidian Univeristy, Xi’an 710126, China

4. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

5. New Cyber Research Department, Pengcheng Laboratory, Shenzhen 518055, China

Abstract

Classification is a very important task in data mining and pattern analysis, which have been widely used to solve various real-world problems. To obtain better classification performance, in this paper, we propose a novel classification framework based on multiple weighted class association rules (C-MWCAR), whose key idea is to transform the association among features into a set of class association rules (CARs), then classify unknown instances based on the CARs obtained. Concretely, C-MWCAR consists of a dictionary order-based CAR mining algorithm (DOCMA), a branch-based CAR selection algorithm (BCSA), and a multiple weighted CARs-based classifier (MWCC). Specifically, DOCMA mines the complete set of CARs, from which BCSA further selects a representative and concise set of CARs based on the distribution, coverage, and redundancy of the mined CARs. When classifying an unknown instance, MWCC picks out a set of CARs that are most similar to the given instance and computes the weighted importance of those CARs. Finally, the class label of the given instance will be determined by the similarities between the instance and the CARs and the weighted importance of the CARs. Furthermore, we apply the proposed C-MWCAR to a real-world classification task, i.e., hypertension diagnosis, based on a real dataset of 128 subjects. Experimental results indicate that C-MWCAR outperforms four baseline methods and achieves 93.3%, 93.8%, and 92.7% in terms of accuracy, sensitivity, and specificity, respectively.

Funder

National Natural Science Foundation of China

Major Key Project of PCL

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3