Adaptive Finite-Time Trajectory Tracking Control for Coaxial HAUVs Facing Uncertainties and Unknown Environmental Disturbances

Author:

Lu Mingqing123,Liao Fei23ORCID,Xing Beibei23ORCID,Fan Zhaolin23,Su Yumin1,Wu Wenhua23

Affiliation:

1. Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China

2. Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. Cross-Media Vehicle Research Center, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

In this paper, the problems of system design, dynamic modeling, and trajectory tracking control of coaxial hybrid aerial underwater vehicles (HAUVs) with time-varying model parameters and composite marine environment disturbances are investigated. It is clear that a stable transition between different media remains a challenge in the practical implementation of amphibious tasks. For HAUVs, accurate dynamic modeling to describe complex dynamic variations during vehicle takeoff from underwater to air is a huge challenge. Meanwhile, due to the rapid changes in model parameters and the external environment, vehicles are likely to fall into the sea during the cross-domain process. An integrated continuous dynamic model considering hydrodynamic changes is established by introducing a linear switching coefficient during the process of trans-medium motion. A nonsingular fast terminal sliding-mode control (NFTSMC) algorithm combined with adaptive technology is used to design the position and attitude of the controller. With no previous knowledge of external interferences and lumped uncertainties of the HAUV, the adaptive NFTSMC (ANFTSMC) algorithm achieves the control objectives; at the same time, the inherent chattering problems of sliding mode control (SMC) are weakened. The finite-time stability of the global system is proven strictly using a series of mathematical derivations based on Lyapunov theory. The effect of the controller applied is analyzed through a series of simulations with representative working conditions. The results show that the proposed ANFTSMC can realize a “seamless” air–water trans-medium process, which proves the superiority and robustness of the proposed control algorithm.

Funder

Feng Lei Youth Innovation Fund of CARDC;the National Defense Key Laboratory Fund under Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3