Depth Map Super-Resolution Reconstruction Based on Multi-Channel Progressive Attention Fusion Network

Author:

Wang Jiachen1,Huang Qingjiu12

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

2. Control System Laboratory, Graduate School of Engineering, Kogakuin University, Tokyo 163-8677, Japan

Abstract

Depth maps captured by traditional consumer-grade depth cameras are often noisy and low-resolution. Especially when upsampling low-resolution depth maps with large upsampling factors, the resulting depth maps tend to suffer from vague edges. To address these issues, we propose a multi-channel progressive attention fusion network that utilizes a pyramid structure to progressively recover high-resolution depth maps. The inputs of the network are the low-resolution depth image and its corresponding color image. The color image is used as prior information in this network to fill in the missing high-frequency information of the depth image. Then, an attention-based multi-branch feature fusion module is employed to mitigate the texture replication issue caused by incorrect guidance from the color image and inconsistencies between the color image and the depth map. This module restores the HR depth map by effectively integrating the information from both inputs. Extensive experimental results demonstrate that our proposed method outperforms existing methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3