Fault-Prone Software Requirements Specification Detection Using Ensemble Learning for Edge/Cloud Applications

Author:

Muhamad Fatin Nur Jannah1ORCID,Ab Hamid Siti Hafizah1,Subramaniam Hema1ORCID,Abdul Rashid Razailin1,Fahmi Faisal2

Affiliation:

1. Department of Software Engineering, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia

2. Departemen Ilmu Informasi dan Perpustakaan, Fakultas Ilmu Sosial& Ilmu Politik, Universitas Airlangga, Kampus B. Jl. Dharmawangsa Dalam, Surabaya 60286, Jawa Timur, Indonesia

Abstract

Ambiguous software requirements are a significant contributor to software project failure. Ambiguity in software requirements is characterized by the presence of multiple possible interpretations. As requirements documents often rely on natural language, ambiguity is a frequent challenge in industrial software construction, with the potential to result in software that fails to meet customer needs and generates issues for developers. Ambiguities arise from grammatical errors, inappropriate language use, multiple meanings, or a lack of detail. Previous studies have suggested the use of supervised machine learning for ambiguity detection, but limitations in addressing all ambiguity types and a lack of accuracy remain. In this paper, we introduce the fault-prone software requirements specification detection model (FPDM), which involves the ambiguity classification model (ACM). The ACM model identifies and selects the optimal algorithm to classify ambiguity in software requirements by employing the deep learning technique, while the FPDM model utilizes Boosting ensemble learning algorithms to detect fault-prone software requirements specifications. The ACM model achieved an accuracy of 0.9907, while the FPDM model achieved an accuracy of 0.9750. To validate the results, a case study was conducted to detect fault-prone software requirements specifications for 30 edge/cloud applications, as edge/cloud-based applications are becoming crucial and significant in the current digital world.

Funder

University of Malaya

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Approach for Ambiguity Detection in Social Media Context;2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3